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ABSTRACT

Statistical cost control decisions may be based on two

competing decision models. The Markovian Control model con-

trols a process by investigating the process whenever the

reported cost exceeds a fixed critical limit. The Bayesian

Control model controls a process by using the reported cost

to update the probability of the process being in-control and

investigate the process whenever such posterior probability

is less than a fixed critical value.

This paper compares the relative effectiveness of the two

models by a simulation analysis. It is observed that the

Markovian Control model performs as well as or better than

the Bayesian Control model unless the cost distribution of

the in-control state is more dispersed than that of the out-

of-control state. It is also observed that the relative

effectiveness of the Markovian Control model compared to the

Bayesian Control increases as the savings from an investiga-

tion increases when the cost distribution of the in-control

state is less dispersed than that of the out-of-control state.

4

',|



TABLE OF CONTENTS

I. INTRODUCTION 9----------------------------------9

A. BACKGROUND 9--------------------------------9

B. ISSUES IN COST VARIANCE INVESTIGATION
DECISIONS 0---------------------------------10

C. OBJECTIVE AND SCOPE OF THE STUDY ---------- 14

D. METHODOLOGY ------------------------------- 15

II. DESCRIPTION OF COST VARIANCE INVESTIGATION
METHODS --------------------------------------- 17

A. MARKOVIAN CONTROL METHOD ------------------ 17

B. BAYESIAN CONTROL METHOD ------------------- 24

C. DISTINCTION BETWEEN TWO METHODS ----------- 30

11. DESCRIPTION OF SIMULATION MODEL --------------- 33

A. DECISION-MAKING ENVIRONMENT --------------- 33

B. PROBABILITY DISTRIBUTIONS OF IN-CONTROL
AND OUT-OF-CONTROL STATES ----------------- 34

C. BOUNDARY CONDITIONS BETWEEN OUT-OF-CONTROL
AND IN-CONTROL STATE ---------------------- 39

D. SAVINGS FROM AN INVESTIGATION ------------- 40

E. SUMMARY OF CONDITIONS SIMULATED ----------- 40

F. SIMULATION PROCEDURE ---------------------- 40

IV. DISCUSSION OF RESULTS ------------------------- 42

A. EQUALLY DISPERSED IN-CONTROL AND OUT-OF-
CONTROL STATE WITH LOW DEGREE OF OVERLAP -- 46

B. IN-CONTROL STATE LESS DISPERSED THAN
OUT-OF-CONTROL STATE 6----------------------46

C. IN-CONTROL STATE MORE DISPERSED THAN
OUT-OF-CONTROL STATE ---------------------- 47

5



D. EQUALLY DISPERSED IN-CONTROL AND OUT-OF-
CONTROL STATE WITH LARGE DEGREE OF OVERLAP --- 48

E. NORMAL DISTRIBUTION WITH SMALL DISPERSION
IN IN-CONTROL STATE AND GAMMA DISTRIBUTION
IN OUT-OF-CONTROL STATE ---------------------- 49

F. NORMAL DISTRIBUTION WITH LARGE DISPERSION IN
IN-CONTROL STATE AND GAMMA DISTRIBUTION IN
OUT-OF-CONTROL STATE ------------------------- 50

G. COST REPORTS OF THE PROCESS ------------------ 51

V. CONCLUSION --------------------------------------- 53

APPENDIX A: PROCEDURES OF THE SIMULATION MODEL -------- 56

APPENDIX B: COMPUTER PROGRAMS ------------------------- 72

LIST OF REFERENCES ------------------------------------- 78

INITIAL DISTRIBUTION LIST ------------------------------ 80

6.

6



LIST OF FIGURES

Figure

1-1 Error of Decision ------------------------------ 12

2-1 A Controlled (Markov) Process ------------------ 21

2-2 Cost Distributions ----------------------------- 28

2-3 Illustration of Bayes' Theorem for
Revised Probability ----------------------------

3-1 Equally Dispersed Low Overlap ------------------ 35

3-2 In-Control Less Dispersed than Out-of-Control -- 35

3-3 In-Control More Dispersed than Out-of-Control -- 36

3-4 Equally Dispersed Large Overlap ---------------- 36

3-5 Ganma (y,l) Distributions --------------------- 37

3-6 Narrow Normal In-Control and Gamma Out-of-
Control ---------------------------------------- 38

3-7 Wide Normal In-Control and Gamma Out-of-
Control ---------------------------------------- 38

4-1 Relationship Between XD and L(B) --------------- 47

4-2 Relationship Between XD and L(C) 48

4-3 Relationship Between X D and L(D) --------------- 49

4-4 Relationship Between XD and L(E) --------------- 50

4-5 Relationship Between XD and L(F) --------------- 51

A-1 Flow Chart ------------------------------------- 57

7

.. . : ... _.. u ,.. ... ..... .. .. .. u -. 1 t .. :. , .., .. ,,.I i'T



LIST OF TABLES

Table

2-1 General Payoff Matrix--------------------------- 26

3-1 18 Different Data Points Considered-------------41

4-1 Simulation Results------------------------------ 43

4-2 95% Confidence Interval of XD------------------ 4

4-3 Means of Cost Reports--------------------------- 51

8



I. INTRODUCTION

A. BACKGROUND

Financial planning and control rely heavily on standard

costs or budgets as the principal tool for aiding decision

making. Performance reports typically include a comparison

of actual cost incurred and amount budgeted or allowed.

Variations in cost performance can be expected in virtually

every case. The variation may be caused by random variation

or non-random variation. Random variation is a deviation be-

tween actual and expected cost arising from the stochastic

operation of some correctly specified relationships between

variables. The stochastic nature means that the actual cost

is subject to fluctuations because of random variations beyond

management's control. Non-random variation is a deviation in

cost performance caused by factors over which the manager or

his superior has some control.

Non-random variation can be corrected by investigating the

cost generating process to identify the causal factors for

corrective decisions. But no one advocates taking action and

investigating every cost variance that occurs each period.

Managers recognize that many variances are insignificant and

caused by random, non-controllable factors. Since any inves-

tigation will involve a certain expenditure of effort and

funds, managers should attempt to take investigation and

corrective action only when the cost variation is significant
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and controllable. Furthermore an investigation should be

undertaken only if the benefits expected fi )m the investiga-

tion exceed the costs of searching for and correcting the

source of cost variance.

Therefore, a control problem in the cost management is

to establish a control policy according to which a cost

generating process shall be investigated to see if correc-

tive action is necessary or economic.

B. ISSUES IN COST VARIANCE INVESTIGATION DECISIONS

Several researchers have attempted to develop cost vari-

ance investigation decision models by using a statistical

approach. The basic idea of these approaches came from the

statistical quality control concept in which it is assumed

that some random variations in cost performance are available

and should be specifically taken into consideration in making

decisions about investigation of variances.

Since a manager wants to control the cost generating pro-

cess, he should decide when a variance is worthy of investiga-

tion. If the variance resulted from non-controllable factors,

or if future operations would not improve even if the cause

of the variance was determined, he would prefer not to waste

time and money investigating such variances. On the other

hand, if investigation will result in substantial future sav-

ings and more efficient operation, he will probably want the

variance investigated. For deciding whether to investigate

the process or not, the manager's available information consists

10



of some prior knowledge about the process and a cost report

which was generated from the process. Therefore, in deciding

whether to investigate a variance of the cost report, the

following factors should be considered [1].

a. The probability that the variance resulted from the

random, non-controllable causes.

b. The reward which will result if the variance is investi-

gated together with the associated probability of this reward.

c. Cost of investigation.

It is presumed that the costs generated from the process

have some kind of probability distribution regardless of the

cause of the deviations and that different causes will result

in different probability distributions in cost performance.

Attributing to the characteristics of probability, a decision

maker always associates some probability of errors (which are

called type I and type II error) with his judgment about whether

a cost variance is caused by random factors. If the distribu-

tions of costs which may be caused by controllable or non-

controllable factors are normal distributions, these errors

can be explained as in Figure 1-1.

In Figure 1-1, we can say that the left side probability

distribution function (p.d.f.) is the p.d.f. of costs in "in-

control" state, a desirable state, and the right side p.d.f.

is the p.d.f. of costs in "out-of-control" state, an undesir-

able state which needs investigation. We assume that the

process under consideration exists in either in-control state

or out-of-control state. The type I error means that the

11



cost distributin caused cost distributiin caused
by nn-ccmtrollable by controllable factorsfactors

Type I ,catrol, ye1
error limit error

Figure 1-1: Error of Decision

manager decides not to investigate the process when the

actual state is out-of-control; thus it causes loss of poten-

tial savings from investigation. The type II error means that

the manager decides to investigate the process when the actual

state is in-control; thus the cost of investigation is wasted.

Therefore, the manager has to figure out what control

limit or control criteria (in the figure the control limit x)

can minimize those costs (loss and waste). All statistical

approaches to cost control decisions are aimed at finding

these control criteria.

The statistical control methods can be classified into

two types: (1) the Markovian control method and (2) Bayesian

control method. Both types suggested setting control limits

on which the manager decides whether or not to investigate

12



the process when a cost report from the process is available.

The underlying objective in both cases is to minimize long

run expected incremental cost (waste and loss) or maximize

savings from investigation (cost reduction minus incurred

cost for the investigation).

The Markovian Control method was suggested in the article

"Cost Variance Investigation; Markovian Control of Markov

Process" [2], by Dittman and Prakash in 1978. Under this

method, the cost variance investigation decision is dependent

on one critical limit which minimizes the cost of the process

and can be computed by trial and error.

The Bayesian control was suggested in the article "The

Investigation of Cost Variance" [3], by Dykman in 1969. Under

this method, the cost variance investigation decision is de-

termined by the critical probability which is a function of

all incremental costs involved.

The two statistical approaches found in the literature

do not always result in the same investigate/do-not-investi-

gate decision. A question arises as to which model will lead

to the optimal decisions. Using an analytic approach, Dittman

and Prakash maintained that their Markovian control model is

more effective than the Bayesian control model. However, the

real test of the relative effectiveness of each model under

different conditions remained to be seen. As Kaplan [4] puts

it, "the final judgment on the appropriateness of formal sta-

tistical and mathematical methods for cost variance analysis

must be based on empirical studies" [4: p. 312]. Inan empirical
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study, Magee (51 implemented a simulation analysis of various

cost variance investigation methods, but he didn't study the

Markovian control method for it was not yet known. He justi-

fied simulation by saying that "the simulation analysis is

generally preferable to use analytic methods to find the

properties of alternative decision models, when such methods

are feasible. By using the same sequence of random numbers,

the various cost investigation models can be tested on similar

cost data, facilitating comparisons among models" [5: p. 5321.

Simulation is a dynamic representation of the real world

achieved by building a model and moving it through time. In

a simulation, we can control many features. For comparison

of two cost variance investigation methods, we can simulate

various combination of situations in the in-control state and

out-of-control state. Simple Monte Carlo simulation can be

a useful tool for comparison of two cost variance investiga-

tion methods.

C. OBJECTIVE AND SCOPE OF THE STUDY

The purposes of this paper are to develop a simulation

model for the purpose of comparing the relative effectiveness

of the two cost variance investigation methods and to evaluate

the effectiveness of the two cost variance investigation

methods.

To compare the best Markovian control with the best

Bayesian control, the optimal critical limit for the Markovian

control method and optimal critical probability for the Bayesian

14



control method must be derived. It is not too complicated to

calculate the optimal critical limit, but the calculation of

optimal critical probability is too complicated to be applied

in the real world. A dynamic programming for calculating this

critical probability was suggested by Kaplan [6). But this

calculation is beyond the scope of this paper. Instead of

optimal critical probability, the breakeven probability, which

is calculated from long-run expected savings and investigation

cost, is used in this paper. Long-run expected savings may

be estimated from the historical data. The estimation can be

made by the method suggested by Duvall[8].

In this paper, it is assumed that the long-run expected

savings were given as an external input to the simulation

model.

The scope of this study is confined the comparison of the

relative effectiveness of the two cost variance investigation

methods. Whether or not a manager should use one of these

two methods is a separate question and is not the subject of

this study. There are several necessary assumptions underlying

the two methods. These assumptions are not tested in this

study.

D. METHODOLOGY

The approach taken in this paper to test the relative effec-

tiveness of these two models is to (1) examine the procedures

of each of the two methods by studying relevant articles,

(2) simulate these procedures, (3) incorporate these procedures

15
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into the simulation model, (4) transfer this model to com-

puter program and run the program and (5) analyze the results.

This study is organized into five chapters; Chapter One

presents the background and issues involved in cost variance

investigation decisions, Chapter Two describes the detail of

the two methods to be studied. Chapter Three presents the

details of the simulation model, Chpater Four describes the

results of the computer simulation for various cases, and

finally, Chapter Five shows the conclusion derived from the

analysis of Chapter Four data.

16
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II. DESCRIPTION OF COST VARIANCE INVESTIGATION METHODS

A. MARKOVIAN CONTROL METHOD [2]

1. Specification

The process operates in one of two possible conditions,

i = 1,2, of which condition 1 means that the process is in-

control and condition 2 means that the proces is out-of-con-

trol. If in control, the process may deteriorate into the

out-of-control condition in the next period with a constant

probability (l-g). But, once out-of-control, the process

continues to operate in that condition unless investigated

and corrected. This is summarized in the following Markovian

process "Transition Matrix":

1 2

1 (1-g)
2 L~O(2-1)

The functioning of the process generates, in each

period, say j, a cost Xj, which is a random variable, with

its probability distribution function Fi (t), depending upon

the operating condition, i, of the process.

Pr{X. < xli} = Fi (x) i = 1,2

(2-2)

E(Xji) =

17



The transition takes place before a cost is gener-

ated, so that cost reports provide information about the

current status of the process.

On receiving a cost report, the manager faces a

choice. A first alternative is to regard the process as

having gone out-of-control, and so to incur a fixed discre-

tionary investigation cost, I, which will reveal what, if

anything, is wrong with the process. It is assumed that if

the process is found to be out-of-control, it is reset to the

in-control condition with a constant correction cost K, but

if the process is found to be in-control, it is left to

operate as is.

In the latter case, the manager is said to have com-

mitted an type I error (incurring a cost when it was not

necessary).

The second alternative for the manager is to regard

the process as being in-control, allowing it to run without

intervention for one more period. In this case, the manager

takes the risk of committing a type II error, that is, not

investigating and correcting the process when, in fact, it

was out-of-control.

2. Control Policy: A Single Critical Limit for the
Cost Variance

Consider the class of control policies in which the

manager bases his decision between "investigate" and "don't

investigate" on whether the actual cost X exceeds some

constant value x. Then the conditional probabilities of

18



committing type I and type II errors are constant and are,

respectively, as follows:

Pr(Investigatelin-control} = Pr{X >xli =1}

= 1 - Pr{X <xji =i} (2-3)

= 1 - F1 (x)

Pr{Don't investigatelout-of-control} = Pr{X <xti =2}

= F2 (x) (2-4)

However, the unconditional probabilities of type I

and type II errors do change with time, for they depend upon

the probabilities of the process being in-control and out-

of-control, which in turn, depend upon the number of periods

elapsed since the last managerial intervention.

If the process is in-control when the report is pro-

duced, then, no matter what action the manager chooses, the

process will start the next period in the in-control condi-

tion with probability 1. If, on the other hand, the process

is out of control when the cost report is produced, then it

will start the period in the out-of-control condition with

probability equal to the probability of a type II error,

F2 (x), which is constant. Thus, the effect of manager's

control action can be described by the following Markovian

"Control Matrix":

19



1 2 4- condition of the
process afterl1 0 l "ontrol"f is

exercised ( 2-5 )
2 L-F 2 (x) 1-F 2 (x]

=ndition of the process when the cost
report is produced

Therefore, we may define a new Markov process which

combines the process Transition Matrix (2-1) and Control

Matrix (2-5). We refer to it as the associated "Controlled

(Markov) Process".

F2 (x) F2(]

Transition Matrix Control Matrix

- (2-6)
I-F 2 (x) F2 (x)

Controlled Process Transition Matrix

The steady-state probabilities n . (x) (i = 1,2) of1

the controlled Markov Process (2-6) are given by:

12(x) = (1-g) 7rl (x)F2 (x) + T2(x) F2 (x) (2-7)

7r (x) + ff =(x

1 -gF 2 (x) ; = l-gF 2 (x)

20



As may be seen from Figure 2-1, n (X) and w2 (x) are

the steady state probabilities for the states in which the

process finds itself at the end of the managerial control

(or, equivalently, at the start of a period of operation).

They are not the same as the steady-state probabilities s. (x)

(i = 1,2) of the states generating the cost reports. Proba-

bilities sl(x) and s2 (x) are easily found by applying the

process transition matrix (2-1) the the steady state vector

Ir(x), 7T2 (x) ;

s 1 (x) = g 1 (x)

(2-9)

s2 (x) = (l-g) 1 (x) + 2 (x)

1 - gF2 W(x

Controlled Process Controlled
state state state

Process Control
transiticn transition

Figure 2-1: A Controlled (Markov) Process

3. The Expected Cost of Operating Controlled Process

The total expected cost per period is the sum of the

expected cost per period of (i) operating, (ii) investigating,

and (iii) correcting the process.

21



From Equations (2-2) and (2-9), the expected cost per

period of operating the process equals:

C o(x) - plsl(x) + 2s2(x)

= lgw1 (x) + P22(1-g) r1 (x) + 2 2(x)

= u2 - ( x ) g

where

= u2 - il

The investigation costs are incurred in the event

that the cost report X > x. In the steady state, the uncon-

ditional probability of the event X > x is readily computed

using Equations (2-3) , (2-4), and (2-9).

Pr{X >x} = Pr{X >xi =l}S1 (X) + Pr{X>xi=2}s 2 (x)

- .- F()gTx)+(l-g) 1. -F 2 (x)
1 -F (x ) g IT(x) +

1 - gF 2 (x)

T- 'l(x){l - gF 1 (x)} (2-11)

Hence, the expected cost per period for investigating

the process equals:

CI (x) = f1(x)(l - gF1 (x)}I (2-12)

Finally, the correcting costs are incurred in the

event that the cost report X > x and the process is out of

22



control. In the steady state, the probability of such an

event is simply the second term in Equation (2-11), so that

the expected cost per period of correcting the process equals:

(l-g) i -F 2 (x) IK
CK(x) 1 gF 2 (x) IT (x) (1-g)K (2-13)

Thus the total expected cost per period of operating

the controlled process is the sum of (2-10), (2-12) and (2-13),

which can be expressed as follows:

C(x) = C (x) + CI W + CK x

= U2 + Il(X){(l-g) (K+I-gAi) - gI{F(X)}

= u2 + 1 (x){a - bF(x) }, (2-14)

where

a = (l-g)K + I -gAu 0

(2-15)

b = gI (I = 0 is uninteresting).

4. Optimal Policy

A natural question at this point is: "what control

limit x* is optimal?" Of course, the x that minimizes the

total expected operating cost (C(x)) is the optimal control

limit. To get the optimal value of x, the first order deriva-

tive can be derived from Equation (2-14):

dC (x) =dr 1 (x)
dx dx 1W{a -bF l(x)} - b 1 (x)f (x) (2-16)

23



d- 1 (xW - -g)f2 (W
d- (2-17)

dx 2{-gF2 (x)}

The cost C(x*) is an extremum x* such that dC(x*)/dx

= 0. That is:

(l-g) f(x*){a-bF ( x * ) }+bf l ( x * ) [(-F 2 ( x * ) } - g F 2 (x*)}= 0 (2-18)

There are two possibilities; either x* is such that

{a-bFl(x*)} = 0 and {1-F 2(x*)} = 0; in this case 7 l(x*) = 0,

that is, the process runs uncontrolled forever. Or, since

all other terms in Equation (2-18) are positive, x* must lie

in the open interval on which;

* a

{a -bFl(x*)} < 0, that is, F (x*) > (2-19)

Intuitively we can understand that the optimal control

limit should be a certain point where x* > pl. And for the

x such that x < x*, then C(x) > C(x*), also for the x such

that x > x*, then C(x) > C(x*). Therefore we can get optimal

control limit x* by trial and error.

B. BAYESIAN CONTROL METHOD [3]

In the Markovian control, the past cost reports don't have

any effect on the current period's cost investigation decision.

But in the Bayesian control it affects the current period's

decision.

1. Characteristic

This method was first suggested by Bierman, Fouraker

and Jaedike [1]. The methodology was first developed by

24



Duvall [6] and later was expanded by Dykman (3]. This method

is based on the Bayesian decision theory. The subjective

prior probability can be converted to the posterior proba-

bility by additional information of periodic cost report,

according to the Bayes' Theorem.

A two state, two action problem is assumed.

8 1: in-control

e 2 : out-of-control

a1 : investigate

a2 : do not investigate

The decision on whether or not to investigate is

based on reports of incurred costs. It is assumed tha in-

curred costs are reported on a periodic basis. Thus, a do-

not-investigate action implies that the activity is continued

at least until the next cost observation is available. An

additional assumption at this point is that a full investiga-

tion will always reveal the cause of an out-of-control action,

which can then be immediately corrected.

The cost of investigation is assumed to be some con-

stant I, and the present value of the savings obtainable from

an investigation when the activity is out of control is L

(L = Actual savings from the process-correction cost K) where

L > I; otherwise an investigation would never be warranted.

Values of L must be estimated before this method can be made

operational.

Once L and I have been estimated, the payoffs in costs

for the investigation problem in two-state form are as given

25



in Table 2-1. Typically these values will be of a magnitude

such that the decision maker is willingto act on the basis

of the expected values.

Table 2-1

General Payoff Matrix

state

6 : in-control 6 : out-of-control

a1: investigate I I-L

a 2: don't00

investigate 0 0

To start, the process is assumed to be in a state of

control but may move out-of-control with probability (l-g).

The process cannot shift from the out-of-control state to the

in-control state. As in the Markovian control method, this

situation can be represented by a Markov process with transi-

tion matrix:

1 2

(2-20)
2 1)

2. Control Policy: Single Critical Probability for

the Posterior Probability of the In-Control State

Assume now that the decision maker can and

does have a (prior) subjective probability mass
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function, call it f0, over the states. Let the probability

of state 6. in any period n (n = 1,2,...) be denoted by f n(e).

Thus the initial probabilities are given by f (e).

Under these assumptions, the "investigate" action

should be taken at some stage n if its expected cost is less

than the expected cost of delaying investigation. That is:

E(C(ale)] < E[C(a2 ,e)) = 0

where C is the payoff random variable and e is the state

random variable. Substituting this means that

C[fn (e)] + [I-L] [l-fn (6)] < 0 (2-21)

An investigation is immediately called for if C[fn (81)]

+ (I-L] [l-fn(eI)] is negative. In each future period n

(n = 1,2,...) a cost level x is observed. Suppose that this

cost level is more likely to occur when the process is out of

control (see Figure 2-2). This increases the probability o-

state 82 at the expense of state a If the probability attach-

ing to the 82 is increased enough, then the expected loss from

investigation will be less than the expected loss from not

investigating and action a is preferred.

By the characteristics of the transition from in-control

to out-of-control, the state probabilities should be adjusted.

It can first be adjusted to reflect the effect of the transi-

tional probabilities (2-20).
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in-cntrol uct-of-control

fX l O2)

E(xe 1 ) x E(xl0 2)

Figure 2-2: Cost Distributions

Assuming that if transition occurs before a cost

observation, the results are:

fn (el) = gfn 1 l(01 )
(2-22)

fn(02) (l-g)fn-1 (e1 ) + fn-l(e2)

These are illustrated in Figure 2-3.

Then using these adjusted probabilities as prior

probabilities of the period n, the revised probabilities

given a cost report x can be obtained by Bayes' Theorem.

f (0 f ~ X (2-23)

Z f xl(xI j)fnle j

j=1

Note that state a 1 cannot occur in period n if it

did not exist in period n-1 and out of control state is

assumed to be discovered if an investigation is made.
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state in period probability state in period revised state
n-i and state of state n and state probability
probabil-,y change probability

f g f

-8 f f((

fnf (ex2) (-g) ffn1 (f)

+ fn 1 (e 2 ) = frO(62)

Figure 2-3: Illustration of Bayes' Theorem
for Revised Probability

In order to avoid the expected value calculations each

time a cost value is observed, the breakeven probability that

equates the two actions can be obtained. To do so, let the

revised state probability for state a1 after n cost observa-

tions be given by fn (e). Thus fn(e 2 ) 1 - fn (l. Then

solving for the expected costs of investigation gives:

E[C(a,6)] = Cf n(e ) + [I-LI 1 -fn(el)] (2-24)

If this expectation is less than zero, the process

is a candidate for investigation; while it exceeds zero, the
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process is not. Setting the expectation given by Equation

(2-24) equal to zero and solving the equation gives the

breakeven value, or the indifferent point:

fn(1) - L- (2-25)n 1L

For example, we assume that L equals 12,000 and I

equals 2,000, then the breakeven probability is 0.83

((12000-2000)/12000). This breakeven probability is denoted

by q in this paper. If fn (61) < q, an investigation is sig-

naled, otherwise it is not. Note that the breakeven value

is independent of stage n and therefore relevant to all time

periods.

C. DISTINCTION BETWEEN TWO METHODS

The major distinction between the two methods are the

criteria of whether or not to investigate the process. The

Markovian Control method relies on the critical limit (x*)

to decide whether or not to investigate the process. The

process is investigated simply because the reported cost ex-

ceeds a critical value x*; the history of cost reports is for-

gotten. The critical limit can be obtained by trial and

error. On the other hand, the Bayesian Control method relies

on the critical probability (q) to decide whether or not to

investigate the process. In this method, the manager keeps

track of the probability of the process being in-control at

the time of the next cost report; the periodic cost reports

serve to update this probability and the process is investigated
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whenever the updated probability is less than the critical

probability.

Although each method has a different criterion for the

investigation of the process, both methods aimed to minimize

long run expected cost. Thus we have to resort to the long

run expected cost in comparing the effectiveness of the two

methods. An analytical approach to the comparison of effec-

tiveness of the two methods was presented in the article "Cost

Variance Investigation: Markovian Control versus Optimal Con-

trol" [7], by Dittman and Prakash in 1979. In this article

they concluded that "it is observed that Markovian Control

(Dittman-Prakash policy) performs almost as well as the Opti-

mal Control (the best Bayesian policy) unless the in-control

cost has substantially greater dispersion than the out of

control" [7: p. 358]. The best Bayesian policy means that the

process is controlled by optimal critical probability (q*),

which can be obtained from solving dynamic programming sug-

gested by Kaplan, rather than controlled by the breakeven

probability (q) (which is simpler than optimal critical

probability). Dittman and Prakash assumed that the Optimal

Control was the best control method under the criterion of

minimizing long run expected cost. But Markovian Control is

less complex than Optimal Control to apply. Under these

assumptions they measured the opportunity cost of simplicity

in the Markovian Control.

This analytical approach did not do anything with the

actual periodic cost report. How the actual cost reports
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behave against the theoretical control criteria can be

examined only by an empirical study (simulation). Cost re-

port in a period is a random sample from the defined proba-

bility distribution and the manager should decide whether or

not to investigate the process by this random sample.

In this paper Bayesian Control with the breakeven proba-

bility is compared with the Markovian Control. The two methods

are selected for comparison for the following two reasons:

(1) both are easy to apply in a realistic setting and there-

fore the opportunity cost of simplicity can be glossed over;

(2) for research has not been done to compare the relative

effectiveness of the Markovian Control and the breakeven criti-

cal probability Bayesian method.

.3
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III. DESCRIPTION OF THE SIMULATION MODEL

A. DECISION-MAKING ENVIRONMENT

The preceeding chapter described the Bayesian and the

Markovian decision models. However the relative effective-

ness of the two models remains to be tested. Different

decision-making environments, such as cost savings from an

investigation, different distributions of cost performance

under the in-control or out-of-control state, etc., may have

different effect on the usefulness of the two decision models.

In the Markovian Control model the process cost was ex-

pressed by Equation (2-14):

C(x) = P2 + 71
(x ) {a -bF1(x)},

where

a = (l-g)K + I -ga,

and

b = gI.

If the process is never investigated, the long run ex-

pected process cost per period is P2 (the mean cost of out-

of-control state). Therefore in the above equation, the term

7r 1(x){a-bF1 (X) = s(x) should be negative for control to be

worthwhile. Since F (x) can never be greater than one and

I1(X) can never be negative, if the value a/b is such that
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a/b > 1.0, the term s(x) is necessarily positive. It means

that the optimal policy for this process is "never investi-

gate". On the other hand, if the value of a/b is much smaller

than -1.0, the ootimal policy is "always investigate". Thus,

the relevant range for the value of a/b should be less than

one but not too much less than -1.0.

In the Bayesian Control model, the control point (or

breakeven probability) was expressed by Equation (2-23) ( ).

In the same context, the extreme values of breakeven proba-

bility (close to zero or close to one) are not proper for

comparison with the Markovian Control model.

B. PROBABILITY DISTRIBUTIONS OF IN-CONTROL AND OUT-OF-

CONTROL STATES

In order to evaluate the relative effectiveness of the

two models under study, we can consider various combinations

of probability distributions of in-control and out-of-control

states. For example, dispersion of in-control state can be

larger or smaller than or the same as that of the out-of-

control state.

The probability distributions assumed in this simulation

study are as follows.

(a) Equally dispersed in-control and out-of-control states

with low degree of overlap--in this case, the mean cost of an

in-control state is assumed to be $100 with a standard devia-

tion of $5, and the mean cost of an out-of-control state is

assumed to be $120 with a standard deviation of $5.

Figure 3-1 depicts this situation.
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in-control state out-of-control state
N(100,5) N(120,5)

85 100 120 135

Figure 3-1: Equally Dispersed Low Overlap

(b). In-control state less dispersed than out-of-control

state--in this case, the mean cost of an in-control state is

assumed to be $100 with a standard deviation of $5 and the

mean cost of an out-of-control state is assumed to be $120

with a standard deviation of $30.

Figure 3-2 depicts this situation.

in-control state out-of-control state

iN(100, 5) 

N (120,30)

30 100 120 210

Figure 3-2: In-Control Less Dispersed
Than Out-of-Control

(c). In-control state more dispersed than out-of-control

state--in this case, the mean cost of an in-control state is

assumed to be $100 with a standard deviation of $30 and the
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mean cost of an out-of-control state is assumed to be $120

with a standard deviation of $5.

Figure 3-3 depicts this situation.

out-of-control state

in-cmtrol state N(120,5)
N (100, 30)

10 100 120 190

Figure 3-3: In-Control More Dispersed
Than Out-of-Control

(d). Equally dispersed in-control and out-of-control states

with large degree of overlap--in this case, the mean cost of

an in-control state is assumed to be $100 with a standard

deviation of $30 and the mean cost of an out-of-control state

is assumed to be $120 with a standard deviation of $30.

Figure 3-4 depicts this situation.

in-ccntrol state out-of-ccntrol state

N(100,30) N(120,30)

10 100 120

Figure 3-4: Equally Dispersed Large Overlap
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4P_

For the following two cases, the probability distribution

of the out-of-control state is assumed to have a gamma dis-

tribution. The gamma distribution is not symmetric, it is

skewed to the left from the mean (Figure 3-5). The gamma

distribution is decided by two parameters (y,X). Since the

parameter y affects the shape of the distribution, we can

make various shapes by selecting proper y according to the

characteristic of the cost process under consideration. For

some situations, the use of gamma distributions could be more

practical and more similar to the actual process.

XY
05Y--2 f(X W - (Xx) Y-1 e- ' x

- -3 -y- 4 
=I

X= av(X) X2

1 2 3 4 5 6 7 8 9 10
X=l

Figure 3-5: Gamma (y,l) Distributions

(e). Normal distribution with small dispersion in in-control

state and gamma distribution in out-of-control state--in this

case the in-control state is assumed to be a normal distribu-

tion with a mean of $120 and A equal to one. Since parameter

y affects the shape of the gamma distribution, the shape is

approximately symmetric when y exceeds 50. To simulate a

process skewed to the left, two is assumed for the parameter

y and then it is transformed to the mean of 120. The formula

chosen for the transformation is Y = 85 + 17.5X; where X is a
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Gamma (2,1). Then the mean of Y is 120 and the variance of

Y is 612.5 (standard deviation is 24.75). We can make differ-

ent shapes of Gamma (2,1) with various mean and variance by

adding and multiplying Gamma (2,1). For convenience, G(120,1)

refers to the transformed distribution in this paper.

Figure 3-6 depicts this situation.

N(100,5) out-of-cntrol state
G(120,1) -- G(2,1) x17.5 + 85

85 100 120 170

Figure 3-6: Narrow Normal In-Control and
Gamma Out-of-Control

(f). Normal distribution with large dispersion in the in-

control state and gamma distribution in the out-of-control

state--in this case the in-control state is assumed to be a

normal distribution with a mean of $100 and a standard devia-

tion of $30 and the out-of-control state is assumed to be the

same as case 5.

Figure 3-7 depicts this situation.

out-of-control state
in-cmtrol state G(120,1) I G(2,1) x 17.5 + 85

10 100 120 190

Figure 3-7: Wide Normal In-Control and
Gamma Out-of-Control
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C. BOUNDARY CONDITIONS BETWEEN OUT-OF-CONTROL STATE AND
IN-CONTROL STATE

We can further consider different boundary conditions in

which the status of a cost process at the beginning of each

period is assumed. Both the Bayesian Control model and the

Markovian Control model assume that an investigation always

uncovers the reason why the process has deteriorated to the

out-of-control state and that the causal factor is corrected.

However, we can suppose a boundary condition between out-of-

control and in-control state. If we investigate the process

when the process is in control, we may or may not know to

what degree the process has transferred into the out-of-

control state. If an investigation simply reveals whether the

process is in-control or out-of-control but does not deter-

mine to what extent the process is drifting toward out-of-

control state, the probability of the in-control state doesn't

return to one at the beginning of the next period by an inves-

tigation in the preceeding period. In other words, the pro-

cess will operate one more period in the same condition as

at the end of the preceeding period, i.e., it is drifting into

out-of-control state to some extent. Thus the probability

of the in-control state at the beginning of the next period

may not return to one; say condition (2).

On the other hand, we can also suppose that the above

boundary condition cannot exist and that an investigation al-

ways reveals the status of the cost process and the probability

of the in-control state is returned to one after an investiga-

tion; say condition (1).
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D. SAVINGS FROM AN INVESTIGATION

Since L, the loss for failing to conduct an investigation

or savings from a productive investigation, is specifically

considered in the Bayesian Control model but not in the

Markovian Control model, this study also examines the effectIof varying the value of L on the effectivenes of each model.
The three values selected for this study (25, 45, 100) are

admittedly arbitrary, but the purpose is to identify the

direction of the change in effectiveness, not the "correct"

and "efficient" absolute number of each model, which really

does not exist except by subjective estimation. When consis-

tent patterns in model effectiveness are discovered, additional

values of L are simulated to ascertain the pattern.

E. SUMMARY OF CONDITIONS SIMULATED

Under each of the two boundary conditions there are 18

different combinations of cases (data points) according to

the assumptions made on different cost distributions and sav-

ings. The 18 data points are summarized in Table 3-1.

The values for the investigation cost (I), correction

cost (K), transition probability (g) and mean differential

cost (AP) are assumed to be 15, 5, 0.9 and 20 respectively in

all cases. Calculated value of a and b are -2.5 and 13.5,

respectively. Therefore the value of a/b (-0.185) is not an

extreme case.

F. SIMULATION PROCEDURE

The simulation procedure is summarized in Appendix A in

the form of computer program flow chart. The computer program
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Table 3-1

18 Different Data Points Considered

I = 15, K= 5, g = 0.9

- itrol N (100, 5) N (100,30)

out-
of
ntrol L= 25 L= 45 L 100 L= 25 L = 45 L =00

, LL

N (100, 5) N(100, 5) N (100,5) N (100, 30) N(100, 30) N (100, 30)

N(120,5) N(120,5) N(120,5) N(120,5) N (120,5) N (120,5) N(120,5)

L = 25 L = 45 L = 100 L =25 L=45 L=100

N(100,5) N(100,5) N(100,5) N(100,30) N(100,30) N(100,30)

N(120,30) N(120,30) N(120,30) N(120,30) N(120,30) N(120,30) N(L20,30)

L = 25 L = 45 L=100 L = 25 L = 45 L=100

N(100,5) N(100,5) N(100,5) N(100,30) N(100,30) N(100,30)

G(120,1) G(120,1) G(120,1) G(120,1) G(120,1) G(120,1) G(120,1)

L = 25 L = 45 L=100 L = 25 L = 45 L=100

N: Normal distribution G: Gamma distribution

G(120,1): Refers to G(2,1)x17.5 + 85

is included in Appendix B. One hundred periods are simulated

in each sample and 50 samples are used to estimate the mean

differential cost (XD) between the two decision models. Al-

ternatively, one can interpret that the simulation result is

based on 5000 iterations, which is more than enough to guaran-

tee stability of the simulation result and provide the basis

for the evaluation of the long-term effectiveness of the deci-

sion models under study.
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IV. DISCUSSION OF RESULTS

Results of the implementation of the simulation model

for the data points and conditions, that were explained in

Chapter III, are summarized in Table 4-1.

In Table 4-1, the positive value of XD means that the

incurred cost for Bayesian Control is less than that of

Markovian Control and the negative means the converse. To

test whether or not the values are statistically significant,

Table 4-2 shows the 95% confidence interval for each value

of X We can say that the value of XD is statistically signi-

ficant if the confidence interval doesn't include zero. Other-

wise, we can't say that. Furthermore, we have to compare the

value of KD with the mean difference cost between in-control

and out-of-control state ($20 in this study). This comparison

enables us to see the relative magnitude of the value of XD.

We now can look for significant patterns in the tabulated

results. A relative magnitude of differential cost between

the two control methods can be used to figure out whether or

not the differential cost is practically significant. The

differential costs of the two control methods are affected

by the mean cost difference of the two states (AP) to some

extent, but not affected by the absolute amount of a cost

report.
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Table 4-1

Simulation Results

(a) N(100,5) N(120,5)
Condition (1) Condition (2)

Data Savings M Pc R.M. 5- - 5-
Points (L) XD (% XD XD1  R.%; XD

1 25 112.50 0.40 0.176 0.9 0.262 0.175 0.9 0.260

2 45 112.50 0.67 0.210 1.1 0.256 0.209 1.0 0.257

3 100 112.50 0.85 0.185 0.9 0.284 0.178 0.9 0.284

(b) N(100,5) N(120,30)

4 25 112.65 0.40 0.996 5.0 0.708 0.831 4.2 0.762

5 45 112.65 0.67 -0.249* 1.2 0.941 -1.028 5.1 1.180

6 100 112.65 0.85 -3.915 19.6 1.020 -4.911 24.6 1.169

(c) N(100,30) N(120,5)

7 25 117.25 0.40 1.902 9.5 1.204 2.029 10.1 1.342

8 45 117.25 0.67 2.037 10.2 1.141 2.168 10.8 1.269

9 100 117.25 0.85 2.481 12.4 1.023 2.613 13.1 1.151

(d) N(100,30) N(120,30)

10 25 130.95 0.40 0.580 2.9 1.043 1.300 6.5 1.123

11 45 130.95 0.67 1.590 8.0 1.110 1.964 9.8 1.136

12 100 130.95 0.85 0.283* 1.4 1.094 -0.023* 0.1 1.246

(e) N(100,5) G(120,1)

13 25 111.35 0.40 0.366 1.8 0.734 0.434 2.2 0.842

14 45 111.35 0.67 -0.645 3.2 0.822 -1.303 6.5 0.972

15 100 111.35 0.85 -4.266 21.3 0.938 -4.754 23.8 1.230

(f) N(100,30) G(120,1)

16 25 124.50 0.40 1.297 6.5 1.199 2.313 11.6 1.297

17 45 124.50 0.67 2.504 12.5 0.980 3.426 17.1 1.113

18 100 124.50 0.85 2.315 1.6 1.126 2.791 14.0 1.305
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Table 4-1 (Cont'd)

X: Estimate of XD; Arithmetic mean of incurred cost ofDi

Markovian Control minus incurred cost of Bayesian
Control, derived from fifty mean (RD) of one hundred

iterations.

R.M. (%): Relative magnitude of to the mean difference

cost between in-control and out-of-control state.
{ Dx 100 D x10
2 I = D

SX.-•Estimated standard deviation of 3D (S D = - J")
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Table 4-2

95% Confidence Interval of XD

Data
Points Conditions (1) Condition (2)

1 0.101 - 0.251 0.101 - 0.249

2 0.137 - 0.283 0.136 - 0.282

3 0.104 - 0.266 0.097 - 0.259

4 0.795 - 1.197 0.614 - 1.048

5 -0.528 - 0.031* -1.363 - -0.692

6 -4.218 - -3.611 -5.243 - -4.578

7 1.544 - 2.260 1.647 - 2.411

8 1.698 - 2.376 1.807 - 2.529

9 2.177 - 2.785 2.285 - 2.941

10 0.283 - 0.877 0.980 - 1.620

11 1.274 - 1.906 1.641 - 2.287

12 -0.028 - 0.594* -0.377 - 0.332*

13 0.157 - 0.575 0.194 - 0.674

14 -0.879 - -0.411 -1.580 - -1.026

15 -4.533 - -3.999 -5.104 - -4.404

16 0.956 - 1.638 1.950 - 2.676

17 2.225 - 2.783 3.109 - 3.743

18 1.995 - 2.635 2.420 - 3.108

t value (95%, 49 degrees of freedom): 2.012

* data cell that is statistically indifferent
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A. EQUALLY DISPERSED IN-.CONTROL AND OUT-OF-CONTROL STATE
WITH LOW DEGREE OF OVERLAP (N(100,5),N(120,5))

This case included data points 1,2,3. Bayesian Control

performed better than Markovian Control in all the data

points of this case. But the relative magnitudes of differ-

ential cost of the two methods were small. The greatest

magnitude in Table 4-1(a) was 1.1 percent of the mean differ-

ence cost between the two states. Therefore, it is hard to

conclude that the one method performs better than another.

Dispersion of the distribution of states can be interpreted

as a degree of uncertainty in a probability distribution. The

degree of uncertainty in this case is relatively small for

both states. It means that the chance of a manager committed

to type I, or type II error is very low. Therefore small

magnitude of differential cost of the two methods can be

attributed to that reason.

B. IN-CONTROL STATE LESS DISPERSED THAN OUT-OF-CONTROL STATE

(N (100,5) ,N (120,30))

This case included data points 4,5,6. This case is more

likely to occur in the real world. It is reasonable that the

outcome is an in-control state is more certain than that of

an out-of-control state.

In this case, Markovian Control performed better than

Bayesian Control for larger values of L, but the reverse is

true for lower values of L. In the medium range, however,

the result is inconclusive, as indicated by the *. The rela-

tive performance of the Markovian Control compared to the

Bayesian Control was bettered as the amount of savings
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increases. To see the trend of the differential cost be-

tween the two methods, differential costs for three addi-

tional values of savings were obtained. Figure 4-1 shows

this result.

+2

0
0 .......... "--O 225...........

-J..74
-2 .-2.93
-4 . . . . .. 3 9

25 35 45 65 85 100 (L)

Figure 4-1: Relationship Between xD and L(B)

The relative magnitude of Markovian Controlh better per-

formance was relatively large in the larger values of L; it

was 19.6% under condition (1) and 24.6% under condition (2).

On the other hand, the relative magnitude of Bayesian Control's

better performance in the lower values of L was around 5%.

Therefore, we can say that the Markovian Control performs

better than Bayesian Control in this case, especially when

the value of L is large.

C. IN-CONTROL STATE MORE DISPERSED THAN OUT-OF-CONTROL STATE

(N(100,30) ,N(120,5))

This case included data points 7,8,9. This case is less

likely to occur in the real world.

In this case, the Bayesian Control performed better than

the Markovian Control in all the data points. And the relative
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performance of the Bayesian Control compared to the Markovian

Control was bettered as the amount of savings increases.

This trend is the reverse of Case B discussed above. Figure

4-2 shows the relationship between XD and L.

2.4
+24 1.901.972.04 2.26 2.44 2.48

25 35 45 65 85 i00 (L)

Figure 4-2: Relationship Between X D and L(C)

The relative magnitudes of Bayesian Control's better

performance ranged from 9.5% to 13.1%.

Therefore, we can say that the Bayesian Control performs

better than the Markovian Control in this case.

D. EQUALLY DISPERSED IN-CONTROL AND OUT-OF-CONTROL STATE

WITH LARGE DEGREE OF OVERLAP (N(100,30),N(120,30))

This case included data points 10,11,12. In this case,

the Bayesian Control performed better than the Markovian

Control in the middle range of L values simulated. However

the advantage of the Bayesian Control model appears to de-

crease as the assumed value of L gets higher or lower.

Figure 4-3 shows the relationship between I and L.D

The relative magnitude of Bayesian Control's better per-

formance was greatest in the medium values of L; it was 8%
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Figure 4-3: Relationship Between XD and L(D)

and 9.8% respectively under the two boundary conditions

assumed. Therefore, the results of this case is somewhat

inconclusive.

E. NORMAL DISTRIBUTION WITH SMALL DISPERSION IN-CONTROL
STATE AND GAMMA DISTRIBUTION IN OUT-OF-CONTROL STATE
(N(100,5),G(120,1))

This case included data points 13,14,15. In this case,

the Bayesian Control performed better than the Markovian

Control in the lower values of L and the Markovian Control

performed better than the Bayesian Control in the medium

and larger values of L. Figure 4-4 shows the relationship

between XD and L.

The relative performance of the Markovian Control compared

to the Bayesian Control was bettered as the values of L

increases.

The relative magnitudes of Bayesian Control's better per-

formance were 2% in the lower values of L and those of Markovian

Control's better performance were around 5% in the medium values

of L and around 22% in the larger values of L.
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Figure 4-4: Relationship Between X and L(E)D

Therefore we can say that the Markovian Control generally

performed better than the Bayesian Control in this case.

F. NORMAL DISTRIBUTION WITH LARGE DISPERSION IN-CONTROL
STATE AND GAMMA DISTRIBUTION IN OUT-OF-CONTROL STATE
(N(100,30),G(120,1i) )

This case included data points 16,17,18. In this case,

the Bayesian Control performed better than the Markovian

control in all the data points. The relative performance

of the Bayesian Control compared to the Markovian Control

was best in the medium values of L. Figure 4-5 shows the

relationship between XD and L.

The relative magnitudes of Bayesian Control's better per-

formance were around 9% in the lower values of L, around 15%

in the medium values of L and around 12% in the larger values

of L.
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We can say that the Bayesian Control performed better

than the Markovian Control in this case.

G. COST REPORTS OF THE PROCESS

As a by-product of the simulation, a mean of cost reports

derived from the 5000 iterations was calculated for each case.

Cost reports depend on the combination of cost distribution

of the two states. Table 4-3 shows those results.

Table 4-3

Means of Cost Reports

In- (Xit-ofIn- O Markovian Control Bayesian ControlCase Control Cotrol
State State Condition (1) Condition (2) Condition (1) Condition (2)

a N (100,5) N (120, 5) 105.15 105.18 102.07 102.15

b N (100,5) N (120,30) 105.93 105.97 103.64 105.38

c N(100,30) N(120,5) 104.22 105.98 102.33 102.34

d N(100,30) N (120,30) 105.31 107.37 104.07 105.04

e N(100,5) G(120,1) 106.09 106.20 103.98 105.93

f N(100,30) G(120,1) 105.85 107.72 103.41 103.65
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In Table 4-3, we can see that means of cost reports are

slightly different from case to case. The mean of cost re-

ports were not affected much by the distributions of the

two states in the controlled process.

Cost differences between the mean of Bayesian Control's

cost reports and the mean of Markovian Control's cost reports

do not affect the differential cost of the two methods (XD)

in the simulation model of this paper.
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V. CONCLUSION

Suggestions to use statistical models to investigate cost

variances originated from the statistical quality control

techniques in industry. However, the application of statisti-

cal cost variance investigation methods is minimal so far.

Kochler reported that "in some general inquiry from some

prominent corporations, I was unable to find single use of

statistical procedures for variance control" [13]. He attri-

butes this paucity of applications not to the inherent in-

applicability of such procedures but to "the fact that ac-

countants have not recognized a conceptual distinction between

a significant and an insignificant variance" (13]. Therefore,

he proceeds to advocate the use of simple testing procedures.

The optimal cost investigation policy developed under the

Dynamic Programming approach (Kaplan) [6] obviously is diffi-

cult to apply. This study compares two statistical models

that are relatively easy to apply. The purpose of this study

is to examine the relative effectiveness of the Bayesian

Control model and the Markovian Control model under different

assumptions.

The results of the simulation study shed some light on the

relative effectiveness of two well developed models under

various conditions.

In Table 4-1 we can see that the values of XD were not

much different between condition (1) and condition (2) for
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each data point. It means that whether or not the probability

of the in-control state returns to one after an investigation

doesn't have much influence on the performance of the two

models. In other words, different assumptions about the

probability of the in-control state efter an investigation

are not an important issue.

Based on the analysis of the simulation results, some

general conclusions regarding the relative effectiveness of

the two decision models can be made as follows:

(1) When the distributions of the two states (in-control

and out-of-control) are identical (Cases A and D), both deci-

sion models are virtually equally effective, although the

Bayesian model has a slight edge when the distributions are

widely dispersed (Case D).

(2) When the distributions of the two states are different,

the effectiveness of a cost variance investigation decision

model seems to be dependent on the cost distribution of the

in-control state.

a) If the cost distribution of the in-control state is

normal with low degree of dispersion (Cases B and E), the

Markovian Control model has a distinct advantage, especially

when the value of L is high. This finding is generally con-

sistent with Dittman and Prakash's conclusion [7].

b) If the cost distribution of the in-control state

is normal but the dispersion is wider than that of out-of-

control state (Cases C and F), the Bayesian Control model
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seems to have an edge. One must admit, however, that Cases

C and F are less likely to occur in the real world.

(3) The assumed value of L plays a significant role in

the relative effectiveness of a decision model in all but

Case A. The larger the value of L is assumed, the better the

relative performance of the Markovian model in Cases B and

E (normal distribution with narrow dispersion for in-control

state). Curvilinear relationships are found in Cases C and

D (normal distribution with wide dispersion for in-control

state).

In summary we observed that the Markovian Control decision

model seems to be as effective as, if not better than, the

Bayesian Control model in those conditions more likely to be

found in the real world. However the Bayesian Control model

seems to be more effective in those special cases where the

cost distribution of an in-control state is widely dispersed.
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APPENDIX A

PROCEDURES OF THE SIMULATION MODEL

The procedures of the simulation model can be explained

by a step-by-step discussion of the flow chart of it (Figure

A-l). For the convenience of explanation a alphabetical label,

under which each procedure is explained, is attached to each

procedure.

(a) For the simulation the variables that should be esti-

mated outside of the model are given as external factors.

L(long run expected savings from an investigation) is not

an easy matter to determine. But it can be determined by the

method that was suggested by Duvall (8].

I(cost of investigation), g(the probability that in-

control state in the current period still remains in an in-

control state, in the next period), and K(correction cost

when the process is out-of-control state) can be estimated

from the past experience and historical data of the process.

Then the distributions of two states can also be deter-

mined by past experience.

For example, during the first iteration we assume that

L equals 60, I equals 15, K equals 5, g equals 0.9, the dis-

tribution of the in-control state is N(100,5) and the dis-

tribution of the out-of-control state is N(120,5). This set

of numbers will be used in the discussion of steps that

follow for illustration purposes.
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(b) Then we can assume that the process starts with in-

control state; probability of in-control state equals one

and the probability of out-of-control state equals zero. A

cost report comes from the process which was transformed by

the Transition Matrix from the prior period's states. There-

fore we can calculate the probability of the in-control state

of the process from which the cost report comes out.

For example, for period one,

PM = 1 x 0.9 = 0.9;

PB = 1 x 0.9 = 0.9.

(c) In this step, we calculate the optimal control limit

(M c) for the Markovian Control by trial and error method.

Total cost of the process decreases as the value of the con-

trol limit increases until a certain point. Beyond this point,

total cost of the process increases as the value of the con-

trol limit increases. Therefore we can find a point which

minimizes total process cost. It is a search process in the

computer program (see Appendix B computer program).

For example, the total cost of the process for a given

control limit of Markovian Control is as follows: suppose

that a given control limit is 110.

From Equation 2-15;

a = (1-g)K + I - gAp = (0.1 x 5) + 15 - (0.9 x20) = -2.5;

b = gI = 0.9 x 15 = 13.5.
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From Equation 2-8:

1 - F2 (x) i - F2(110)

1 - gF2 (x) -1 - 0.9F 2 (110);

F 2(110) = Pr(X < 110IN(120,5))

We can obtain the value of F(110) from the normal proba-

bility table. For computer simulation, we can obtain from

the IBM IMSL library by using CALL MDNOR (Z,PROB); where Z is

a value of the standardized normal distribution ((X-p)/o =

(110-120)/5 = -2) and PROB is a value we want to get

(F 2 (1 1 0)) [9].

From the standard normal distribution table; Pr(Z < -2) =

0.0028 and by the same way Fl(1l0) = Pr(X < II0IN(100,5)) =

0.9772. Then,

1 - 0.0228
1 1 -0.9 x 0.0228 - 0.99767.

From Equation 2-14, the total cost of the process is;

C(l10) = 120 + 0.99767{(-2.5) - 13.5(0.9772)} = 104.3.

We can find the optimal control limit (Mc) which minimizes

the total process cost by repeating the above steps.

For the Bayesian Control, the breakeven probability (q)

can be obtained from Equation 2-25;

L - 1 60 - 15 0.75.
L 60
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(d) Now we generate uniform random number by the random

number generator. In the IMSL library, GGUBS is available.

In this paper, however, the random number generator at the

Naval Postgraduate School is used because it is more efficient

than GGUBS.

The procedures are as follow: [10]

CALL OVFLOW,

CALL RANDOM (SEED,R,A),

where SEED is a seed for the generation, R is a single array

variable that represents random numbers and A is a number that

represents how many random numbers we need.

For the numerical example to be discussed later, the

random number generated in this step is 0.86565.

(e) In this step, the stochastic process of the state can

be decided by using generated random numbers. If the generated

random number is less than or equal to the probability of the

in-control state, which was calculated in step (b), we decide

that the process is in-control. Otherwise, we decide that the

process is out-of-control.

In the example, the generated random number (0.86565) is

less than the probability of in-control state. Therefore, we

decide the process is in-control state.

(f) This step is the same as step (e), except it is for the

Bayesian Control. Since the investigating criteria of the

Bayesian Control are different from that of Markovian Control,

the probability of the in-control state of the Bayesian Con-

trol may be different from that of Markovian Control.
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Therefore, the separated step was used in the simulation

model. In the example, the result is the same as step (e).

Then a cost report has to be generated for the simulation

from the distribution of the state which was decided in step

(e) and step (f).

(g) This step is applied when the status of the process

was decided as in-control state. A cost report is generated

from the distribution of the in-control state. The distribu-

tion of the in-control state is derived from the non-controlla-

ble random deviation around the standard cost (.i). Therefore

it is appropriate to assume a normal distribution with standard

cost as a mean and a certain value derived from past experience

as a standard deviation.

A normal random number generator GGNML (9] is available

in the IMSL library. But in this paper, a normal random

number generator at the Naval Postgraduate School is used.

The procedures for generating normal random number are

as follow [10];

CALL OVFLOW

CALL NORMAL (SEED,Z,A);

where SEED is a seed to generate random numbers, Z is a

single array variable that represents random number and A is

a number that represents the number of random numbers to be

generated.

This randomnumber generator generates random numbers from the

standard normal distribution (Normal (0,1)). Therefore we
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have to transform the standard normal random number into the

random number which comes from the distribution we assumed.

Z(standard normal) =X
o

X(needed random number) = u + Za.

For example, we assume that a generated random number is

1.0, then the actual random number (NM) from the in-control

state (N(100,5)) is 105 (NM = 100 + 5 xl.0 = 105). Accordingly

the cost report from the process is 105 for this period.

Then we have to decide whether or not we should investi-

gate the process based on the cost report. For this, the cost

report is compared to the calculated control limit (M c). If

the cost report is less than the control limit (Mc), we decide

that we should not investigate the process. Otherwise, we

decide that an investigation is desirable.

In this step, the process was in the in-control state.

Therefore if we don't investigate, it doesn't incur any cost

(CM = 0), otherwise it incurs an investigation cost (CM = I)

in addition to the cost report.

For example, we assume the calculated control limit is 110.

Then the cost report (105) is less than the control limit

(110). Consequently, we decide not to investigate and the

incremental cost is zero.

If we investigate the process, we have to update the

probability of an in-control state after investigation, to

simulate the next period. Under Condition (1), which assumes
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that the probability of an in-control state returns to one

after an investigation, the probability of an in-control state

is assigned to be one. Under Condition (2), which assumes

that the probability of an in-control state doesn't return

to one after an investigation, the probabiilty of an in-

control state is assigned to be the probability of an in-

control state at the end of the current period.

Example: Investigation was conducted: P' = 1 (Condition

(1)); PA = PM (Condition (2));

Investigation was not conducted: PA PM"

(h) This step is applied when the process was decided as

out-of-control. A cost report is generated from the distribu-

tion of the out-of-control state. The distribution of the

out-of-control state is derived from the controllable deviation

around a certain expected value (ji 2 ). It may or may not be a

normal distribution. In this paper, normal and gamma distri-

butions were assumed.

If it is assumed that the out-of-control state is a normal

distribution, the procedure to obtain a random number is the

same as in step (g).

For example, if the distribution of the out-of-control

state is N(120,5) and generated random number from N(0,1) is

-1.0, then the random number to be used is 115 (NM = 120 +

5 x (-1) = 115). Accordingly the cost report is 115 for this

period. Then the same procedures as in step (g) are followed.

For example, the cost report (115) is greater than the

control limit (Mc = 110). Consequently, we decide to investigate
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the process. The process is in the out-of-control state.

Therefore, the incremental cost for this period is (4 2 -1l)

- (I +K): CM = (120 -100) - (15 +5) = 0.

The cost of not investigating the process is 2 -111'

because the process incurs cost P2 instead of 1l. In other

words, we lose the savings of v 2 -pl' because we do not inves-

tigate the process.

For the gamma distribution, the gamma random number

generator GGMAR (91 is available in the IMSL library. The

gamma random niumber generator at the Naval Postgraduate School

is also used in this paper.

The procedures are as follow: [11]

CALL OVFLOW

CALL GAMA (G,IX,X,N);

where G is a gamma distribution parameter y, IX is a seed

(integer), X is a single array variable that represents the

gamma random numbers and N is a number that represents the

number of random numbers to be generated.

The random numbers generated from these procedures are

the random numbers from the distribution of r(G,l). But we

need random numbers generated from the assumed gamma distri-

bution. Therefore we need transformation.

For example, we assume a gamma distribution with the mean

of 120 and the parameter A of 1. Parameter Y = 2 and X = 1

are chosen as a proper shape for the out-of-control state

in this paper. Now we assume a random number generated from

the r(2,1) is 1.50. Then the transformation is as follows:
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E(X) = _ = = 2; Var(X) _ 2
-- A - = 2;1 2 1

Y = 85 + 17.5X, then E(Y) = 85 + 17.5 x 2 = 120,

2
Var (Y) = (17.5) x2 = 621.5,

Standard Deviation of Y = 24.75.

Therefore, a needed random number is 116.25 (85 + 1.75 xl.5).

(i) Now we turn to the Bayesian Control method. This step

is applied when the process was decided to be in the in-control

state.

The procedures to generate a random number from the dis-

tribution of the in-control state are the same as in step (g).

Once a random number (cost report) was generated, then we

have to figure out the posterior probability from the informa-

tion of the cost report. Using Bayes' theorem, the posterior

probability can be calculated as follows:

f (Xle.)fn(e.)
fle) =l = I) 2X j n ~fj) =f(0j Ix)= 2

I fx(XHej)fn(0.)
j=l

where x is a cost report, fn(A1) = gfn-l(0,) and

f'(82)= 2 -fn(el) (Figure 2-3).

We can obtain fx(XIej) from the normal distribution den-

sity function.

Z = X- where f(z) = - / 2
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By the above two equations, we can calculate fx(bXlj)

and, in turn, we can calculate f(e.) for a given cost report

X.

For example, if the generated random number was 105,

then:

- 105 - 100 1., 105 - 120 3.0,Zl 5 =10 2 = 5 -. 0

f(xle I) = l e- 11 2  0.242,

f(xle 2) 1L_ e- 9/2 - 0.0044,

= (0.9)(0.242) - 0.998f( 1) (0.9)(0.242) + (0.1) (0.0044)

The revised probability of the in-control state (0.998)

is greater than the breakeven probability (0.75). Therefore,

we decide not to investigate the process and the incurred

incremental cost of the process is zero. The revised proba-

bility, f(el), of this period becomes the beginning probability

of the next period (pi = PBR = 0.98). Consequently, the prior

probability will be 0.882 (0.98 x 0.9) before generating a cost

report for the next period.

If we had investigated the process, the probability of

the in-control state at the beginning of the next would have

been set to "one" under Condition (1) and to the revised proba-

bility of the current period under Condition (2) as the be-

ginning probability of the next period.
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For example: If an investigation was conducted;

PB = 1 (Condition (1)),

PB = PBR (Condition (2)).

If an investigation was not conducted;

PB = PBR"

(j) This step is executed when the process is determined

to be out-of-control.

The procedures to generate a random number from the dis-

tribution of the out-of-control state are the same as in

step (h). We also calculate the revised probability by the

same procedures as in step (i).

For example, if the generated cost report was 116.25

(step (h)), then;

Z 116.25-100. 3.25; z 116.25 -120 - -0.75- 5 = . 5 2 =5"

f(x19 I) = 1 e - 1 0 . 5 6 / 2  
- 0.0020

f(xle12) 1-e-0.56/2 0.3011

(0.002) (0.9)
f(e 1) (0.002)'(0.9) T(0.1)(.3011) = 0.056

Based on this result, we decide to investigate the process.

The incurred incremental cost of the process is (112 -'l
) -

(I +K). For example, CB = ()12 -) - (I +K) = (120 -100) -

(15 + 5) = 0.

The steps explained above are the steps taken for one

iteration of the simulation run. Each iteration puts out two
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incurred incremental costs for the process, one for the

Markovian Control (C M ) and one for the Bayesian Control (C B).

To compare the costs of the two models, a differential

cost between the two models (CM -CB) is calculated for each

iteration.

The probability distribution of the calculated differ-

ential cost between the two models is unknown. However,

according to the central limit theorem; "as the sample size n

increases, the distribution of the mean x of a random sample

taken from practically any population approaches a normal

distribution" [12], we can assume the sample means (XD) of

the differential cost are normally distributed.

We can obtain enough sample means to test the significance

of the mean of sample means (xD) and can estimate the variance

of the same means (S ).
rD

With these values, we can carry out the test of hypotheses

as follows:

XD = CM - CB ,

1 n
X D XDi (n: number of iterations in each

__ n i1 sample)

XD = E (m: number of samples),mjl

= (X - )2
XD -l j1 D

Then
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D -X D

tM_ 1  - D / D; (lix expected value of XD).

Based on this result, we can test the null hypothesis:

there is no significant difference between the two models.

H0 : = 0;
D

If we accept H0, we say that there are no significant

differences in performance betwen Markovian Control model

and the Bayesian Control model under a given situation.

Otherwise, we say that either one of the two methods performs

better than the other under a given situation.

In this paper, 100 iterations for each sample and 50

samples are implemented.
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APPENDIX B

INTGER IX1YCOMPUTER 
PROGRAMS

REAL UliUOtSl tSOGCICKABPMP,PMTPBDPBTNM,PQ
IXCONAFXIFXOP!,0EFF DEFTOE-BAROSQS DS~.)DTBAR,DEFTi,
40TVAAC 9 ,P5,XMIXBCRITE,CLOSS PBR9 TD1,STDOXBTTt
8AxTT X4T , X8 T, XM8AR,XB8ARtXMTBRXBTBRtJ9QDBQMQBQ,
90MVAA DBV AR
DIMENSION N(5000) ,M(5OO0),XM(50,100b.XB(50,1OO3,

2CP(50,101,CB(5,h00)t0EFF(509 100) ,9EFT(50),
5DEBAR( O),DSQ(50),P8R(5000OJ6SCQRE(5O1vXMT(5O),
6XBT( 50)t ,XBAR(50) ,XBBAR( 01,M 4(50)98BQ( 501
READ(5,10) UIUC,SISOvGvCZCKIXIY.CLOSS
P1 3.14286
A =Cl + (1-G)*CK-G*(UO-Ul)
8 G*CI
PA T = 1.
PBT = 1.
XCON=CRIT E( UI ,UOSI,S,PlIGA,B)
P.J=(CLOSS-CI) /CL SS
CALL OVFLOW
CALL RANOOM( IXtNP5000)
CALL NORMAL(IYM,5000)
DO 20 11o50

DO 30 .=1,100
K=J4( I-1)*100
PMP=PMT*G
PBP=P8T*G
IF(NtK).GE.PMP) GO TO 40

XM( IJ)=MfK)*SI+UI
IF (XMItJ)GE.XCON) GO TO 50

CPM( I,J)=0
P MT= P M
GO TO 70

50 CPM( Itlz
PMT=l ig-&-i~tia 0) )Prvn'=PMP(Ca-ditia(2))
GO TO 70

40 XM( I,)=M(K)*SO+UO
I (XJ.GE.XCON) GO TO 60

PMT=PM P
GO TO 70

60 CPM1,J)=(CI+CK)-(UO-UI)
PMT=lI

70 IF(N(K).GE.PBP) GO TO 83~
XB( 1,JJ=M(K)*SI*UI
STOI=(XB(1I J)-UI i/SI
STDO=(XB(I I ,J)-(JO)/SO
FXI=EXP(-( STOI**2/21 3/(SQRT(2*PI))
FXO=EXP(-(ST0**2/12f/(SQRT(2*Pw I
PBR(1,J)=(FXI*PBP)/(FX1*P8P+FXO*(1-PBP)I
IF(PBR(IJl.LE.PQJ GO TO 90

90 Pi3TJ).kA0 J
Go TO 110

80 XB(ItJ)=!l(KI*SO+UC
S DI .(XB(ItJI-UI)/SI
STDO=(XB(J J)-UO)/SO
FXI=EXPI-4 TDI**2/2) )/(SQRT(2*PIl))
FXDuEXP(-(STOO**2/23 )/(SQRT(2*PI))

PBR(I J)-(FXt*PBIP)/(FXI*PBP.FXC*(L-PBP)I
IF(PBA(I#J)*LE.PQ) GO TO 100

CPB(1 JI-gUC-UI
PST-PBR( IJ)
GO TO 110

100 CPSfIJ)*ICI.CK)-IJO-Ul)
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30 CONTINUE
20 CONTINUE

WRITE(6,230)UIUO, SI SO,GCI CKPQ
CEFTT=O
XA T T=0
X3TT=O
Oi) 150 1=1,50

'ARITEf 6,250) I
QEFT IJ=0
XJ4T( I)=0
XBT( I)=Q
DO 160 J=1,100#2

OEFT(Ii=OEFT(tJ.DEFF(lJ).-0EFF(1,J+L)
Xf44 U II=MT (I? XM ( 1J *XMLI, J.1)

DEBAR(II)=DEFT( 1)/100
XMBAR( I)=XMTAI)/100
XBBAR( II-XBT(I)/100

160 CONTINUE
wRITE(692101 0E8AR(I~tXMSARLZ),XBBAR(1
DEFTTO-EFTT+DEBAR(I)
XMTT=XMTT*XMBAR( Ii
XBTTzXBTTI.XBBAR t )

150 CONTINUE
OTBAR.=OEFTT/50
X,4TBRX'4T/50
Xa T8R=XBTT/50

O.4QO

00 1710 1=1 50
OSQ(I)=1E8ARtI )-DTBAR)**2
mQ1I)a ( XMBARI I)-XMTBR)**2
B (I (XBBAR( I)-XBTBR)**2
DSQSXDSQS+DSQ( I)
DMQ=DMQ+MQ (I
oQomQ+8Q( 1)

173 CO)NTINUE
DTVAck=DSQS/49
0OAVAR=DMQ/49
0aVAR=0BQ/49
WRITE(6922Q3 OTBAR DTVAR,XMTBROMVAR,XBTBRDBVAR
CALL HI S TFOESARN 15)
CALL NGRMPLI0EBA tsHGRE950t3)

10 FORMAT(IF6.2 , 17,F6.2)
21.0 F~OR4A(/3XF20.5))
220 FORMAT(//,6F18.5)
230 FORMAT00 ,3T0213X 263PS5)
250 FORMAT(//IIOX p REPLECATIO#N 9 '14)

END
FUNCTION CRITE(UlUQ,9SLS'2,IlG,46)
REAL UtIUO *SISOPIXMI,XMAXYINYCUTtFXN.FXA,CMIN,
3C4AXtEQYtE EWbWIN ,WOUTA BtGXI GXA#ERRDX
OX ( UO-UI/2
X4 X-U I

400 X141 N-XMAX
X14AX-XMI N+DX
YIN=(Xt4IN-UI ,,SI
YOUT-(XMI N-UO)/SO
CALL MDNOW(IN FXN)
CALL MONO R(YOUf, FXA)
EYu(j-FXA)/Il 1-*FXA)

C. IsUQ+QY*A-B*FXN

bWtN=(XMAX-Ul) /Sl
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WOUT-(XMAX-UOU)SO
CALL MON0I-(WIN G(I
CALL MONOft(WO~ GXA)
EQW= ( -GX A) /( t-e*G XA)
Ct4AX=UO+EQW*( A-B*GXI)
E.RABS( CMAX-CMIN)
IF(ERR.LE.O. 01) GO TO 300

IF(CMAX.LT.CMIN) GO TO 400
DXs-(DX/10
GO TO 400

300 CRITE(fXMIN+X4AXl/2
WRITE(6,2401 CRITE

240 FQRMAT(// ,74XF9.5)
RETURN
END
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INTEGER IX,IY
REAL UIUOSI,SO,GCICKA,tB,PMP ,PMTPBP,PBTN,M,PQ,

8XBT19,MTT,XMT,XBTtXMSAR,X SAR,XMTBR,XBTBRtOMQtDBQ,MQ,
9BQt, MVAR, DBVAR
DIMENSION N(50003,Mt5000) KX(5O,1O0),KB(5O ,100),

2CPM4(50 ,100I,CP6(50, iOJ,OEFF(5O,10O),OEFT( 50)
5DraARI5O),DSQ(50), PBR( 50,100), GAM(5O01)ISCORE[50),
6XA1T(50) ,XAT( 5 0) ,XIBARL 50,Xt38AR( 5Of ,MQ(30Ilt8Q(5C)
REAO(59l01 Ul,UO,SI,SOGtCZCKIXt, lCLOSS,R
CALL GjVFLOW
CALL RANOOM( IXN,5000)
CALL NORMAL(IlY,?'4,000)
CALL GAMA(RtlYeGAM,5000)
PI 3*14286
A CI (1-G)*CK-G*(uO-UI)
B G*CI

P'4T I
P3T 1
XCON-CRITE(UIlIUO,S1,SOR 9GA,81
PQ=(CLOSS-CI) )CLOSS
Dt V-GAMMA (R)
CO 20 1=1,50

00 30 Ja1,lO0
Kzj+(I-U)*100
PMP =PAT *G
PB3P=PBT*G
IF(N(K) *GE.PMP) GO TO 40

XM( I,J)=M4tK)*SI+U1
IF (XM(1,J).GE.XCON) GO TO 50

CPM( I ,)=O
P MT= PM P
GO TO TO

50 CPM(IJ)=CI
PMTTPMP (Coraition(2) )PfrTr=1(Ccnditioan(1)
GO T0

40 XM(1 J=854GAM(K)*17,5
I (XMlIJ).GE.XCONl GO TO 60

CPM( I, J) =IJC-UI
P MT= PM P
GO TO 70

50 CPf'411,J)=(CI4CKl-(UO-UI)
PMT= I

TO IF(N(KI.GE.PBP) GO TO 80
XB( tJI=M(KI*S[+UI
STOI=(X8( 1? jJ-LIIISf
XGAN=(XB( IJ)-BS)/17.5
LF(XGAM.LE.O) GO TO 65
FXO=EXP(-XGAM 1*(XGAM**( R-1) )/-DIV
GO TO 66

65 FXOuO
66 FXIzEXP(-(STDI**2/2))/ISQRT(2*P3)i

PBRt(1 .J)(FXI*PBP)/(FXI*PBPi4XO*(1-PBP)I
IF(PB&(I,JI.LE.PQI GO TO 90

PBT(.IAj)=
GO TO11

90 CPB(IJlaCI

so x~jo TO a110
80 XB(LJjt 5,GAM(K )*17o5

0I=XS~,Jl-U~l/SI
FXIPmEXP(:ISTDI**2/2))/ISQR4T(2*P )

IF(PB&( 19J).LE.PQ) GO TO 100
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CPB(I JI-UC-UI
PBT=P6R(1, J)
GO TO 110

100 CPB(Itj)=(CI+CK)-(UO-U!)
PBT=l

110 DEFF(IvJ)=CPM( 1,Jl-CP8( IIJI
30 CONTINUE
20 CONTINUE

WRITE(69230)U1,UO, Si ,SOG,CI CKPQ
DEFTT-0

XBTT-0
00 150 1=1,50

W'RITE 6,250) I
DEFT( I 1=
XMT(11)=0

DO 160 Jl100v2
DEFT (I) =DEFT(I)+DEFF( I,J)+DEFF(1,J+lI
XM T (I)=XMT (I) +XM (1IJ? 4M(1 J.1)
XBT(I)=XBT(I)+XB(IJ)+XB(IJ+1)

160 CONTINUE
DEBAR( Il=OEFT( I)/130
XMBAR( I =XMT(I)/100
XBBAR( I)=XBT(II/100
WRITE(6921O) DEBAR(IbvXMBARCI),XB8AR(I)
OEFTT=DEFTTeOEBAR(l)
XMTT=XMTT+XMBAR (I)
XBTT=XBTT+XBBAR( I)

150 CONTINUE
DTBAR=DEFTT/50
XMTBR=XMTT/50
Xtl TBR = X8T T/5 0
DSQS=0
0D4Q=0
DBQ=O
00 170 1=1. 50

DSQ( I)4 DEBAR( I -DTBARJ**2
,14Q(I)=(XMBAR( I)-Xf4TBRl**2
BQ(Ii= (XB8ARI I)-X&TBR)**2
DSQS=DSQS+DSQ( I)
DMQZOMQ+MQC I)
DBQ=DMQ+BQ( II

170 CONTJIUE
DTVAR=DSQ S/49
DAV AR=DMQ /49
03YVAROBQO/49
WR ITE (6,2201 OTBAR -TVAR,XMTBR,L),VARvX8TBRiDBVAR
CALL HISTF(DEBAR 56 15)
CALL NORMPL(DEBAA,S 9ORE,50,3)
STOP

10 FORIAT(7F6*2#217,2F6.2)
210 FORMAT( /t3(2XAF20.51)
220 FOR?4AT(//t6Fls5)
230 FORMAT1113X7I 263K8.5)
250 FORMAT~il[0X:REPCE ATI N = 1,14)

UINCTION CRITE(U11UO9SfSOqR:tGtA:B)

X~4AXinUI
400 XMIN*XMAX

XIIAXnXM I N.DX
YINI(XMIN-UI )/SI
YOUTA(XMIN-851/17 5
IF(YOUT.LE*0) GO fO 401

76



CALL I4GAM(YOUTtRFXA, 129)
GO TO 402

401 FXA=O
402 CALL MDNORIYI'4FXN)

EQY=(1-FXA)f( I-G*FXAP
CMINcUO+EQY*( A-B*FXN)
WIN=(Xi4AX-UTI/Sl
WOUT=(Xt4AX-85 )/17.5
IFWOUT LE*O) GO TO 403CAcL MOGAM(WOUTvR9GXA,129)
GO TO 404

403 GXAQO
404 CALL MDNOR(WINGXI)

EQW=tL-GXA)/( I-G*GXA)
CtAXPUOEQW*( A-B*GXI)
ERR=ABS( CMAX-CMIN)
IF(ERR.LE.O.001) GO TO 300

IF(CMAX.LT.CMIN) GO TO 400
OX=-(0X/L0 I
GO TO 400

300 CRITE-(XMINrK!AX)/2
WRITE(6 t240) CRITE

240 FORMAT( 6XtF9.5)
RETURN
El D
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